
Received: 3 September 2020  | Revised: 16 March 2021  | Accepted: 11 April 2021

DOI: 10.1111/fog.12541  

O R I G I N A L  A R T I C L E

Improving landings forecasts using environmental covariates: 
A case study on the Indian oil sardine (Sardinella longiceps)

Elizabeth Eli Holmes1  |   Smitha BR2  |   Kumar Nimit3  |   Sourav Maity3  |    
David M. Checkley Jr.4  |   Mark L. Wells5  |   Vera L. Trainer1

1Northwest Fisheries Science Center, 
National Marine Fisheries Service, NOAA, 
Seattle, WA, USA
2Centre for Marine Living Resources and 
Ecology, Ministry of Earth Sciences, Kochi, 
India
3Indian National Centre for Ocean 
Information Services, Ministry of Earth 
Sciences, Hyderabad, India
4Scripps Institution of Oceanography, 
University of California San Diego, San 
Diego, CA, USA
5School of Marine Sciences, University of 
Maine, Orono, ME, USA

Correspondence
Elizabeth Eli Holmes, Northwest Fisheries 
Science Center, 2725 Montlake Blvd E, 
Seattle, WA 98112 USA.
Email: eli.holmes@noaa.gov

Abstract
Commercial landings of sardines are known to show strong year- to- year fluctuations. 
A key driver is thought to be environmental variability, to which small forage fish are 
especially sensitive. We examined the utility of including environmental covariates 
in forecasts for landings of the Indian oil sardine using a long- term time series of 
quarterly catches. Potentially influential variables examined included precipitation, 
upwelling intensity, sea surface temperature (SST), and chlorophyll- a concentration. 
All of these have been shown to be important for oil sardine growth and survival, 
spawning and/or movement into the nearshore fishing regions. However, improving 
out- of- sample landings forecasts using environmental covariates has often proven 
elusive. We tested the inclusion of environmental covariates in forecast models using 
generalized additive models, which allow for non- linear responses, and dynamic linear 
models, which allow for time- varying responses. Only two environmental covariates 
improved out- of- sample prediction: the 2.5- year average regional SST and precipita-
tion over land during June– July. The most significant improvement was with the SST 
covariate and post- monsoon landings with a 19%– 22% reduction in mean- squared 
prediction error. Models with the second best covariate, monsoon precipitation over 
land, provided a 4%– 8% reduction in prediction error. We also tested large- scale 
ocean climate teleconnection indices. One, an index of the Atlantic Multidecadal 
Oscillation, also improved out- of- sample predictions similarly to the multiyear aver-
age regional SST. The earth's changing climate is associated with both rapid warming 
in the Western Indian Ocean and changes to monsoon rainfall patterns. Our work 
highlights these as key variables that can improve forecasting of oil sardine landings.
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1  |  INTRODUC TION

Environmental variability is known to be a key driver of population 
variability for small forage fish, such as sardine, anchovy, and her-
ring (Alheit & Hagen, 1997; Checkley et al., 2017; Cury et al., 2000). 
In particular, ocean temperature and upwelling dynamics have been 
shown to substantially affect the recruitment success and biomass 
of European and Pacific sardines (Sardina pilchardus and Sardinops 
sagax, respectively; Alheit et al., 2012; Garza- Gil, Varela- Lafuente, 
Caballero- Míguez, & Torralba- Cano, 2015; Jacobson & MacCall, 
1995; Lindegren and Checkley, 2013; Lindegren et al., 2013; 
Rykaczewski & Checkley, 2008). The Indian oil sardine (Sardinella 
longiceps Valenciennes, 1847) is among the most commercially 
important fish resources along the southwestern coast of India— 
historically comprising up to 20% of the total marine fish landings 
in India (Vivekanandan et al., 2003). Similar to landings of other 
sardines, oil sardine landings show strong interannual fluctuations 

with larger decadal booms and busts, but Indian oil sardine landings 
also have an unusually strong seasonal cycle driven by the summer 
monsoon. Landings peak in October– December, after the summer 
monsoon, and reach a nadir in April– June.

Two environmental variables, precipitation and coastal upwell-
ing intensity, have been the focus of much research on the effect 
of the ocean environment on Indian oil sardine life history and land-
ings. Precipitation during the summer monsoon and the day of mon-
soon arrival is thought to act as direct or indirect cues for spawning 
(Antony Raja, 1969, 1974; Jayaprakash, 2002; Murty & Edelman, 
1966; Pitchaikani & Lipton, 2012; Srinath, 1998; Xu & Boyce, 2009). 
At the same time, intense monsoon rain over land causes high nutri-
ent flux from rivers into the shallow nearshore regions which causes 
eutrophication and anoxia (Chauhan et al., 2011). The strong sea-
sonal upwelling along the southwestern coast of India is also thought 
to be a key driver of variability in oil sardine abundance and catches. 
Coastal upwelling during the summer monsoon has dual effects: It 

TA B L E  1  Covariate models for the July– September (St) and October– March (Wt) landings. In the model (left) column, the first line is the 
environmental covariate. The response variable and the mechanism by which the covariate is postulated to affect catch is shown below the 
covariate (see Notes for the codes). The tests did not impose a direction (positive or negative) and some environmental covariates have been 
hypothesized to have both positive and negative impacts on oil sardines

Model Description and justification

Jun– Jul and Apr– Mar ocean precipitation
AF: St

Precipitation over the ocean may directly or indirectly prompt spawning, after which spent 
adults migrate inshore and are exposed to the nearshore fishery.

Jun– Jul land precipitation
AF: St
GS: Wt, Wt+1, St+1

Summer monsoon precipitation over land leads to high nutrient input from river discharge. At 
high levels, this leads to eutrophication and anoxia, which drives adults offshore away from 
the fishery. At moderate levels, this supports nearshore productivity.

Apr– Mar ocean precipitation
SS: Wt, Wt+1, St+1

Spring precipitation is an indicator of climatic conditions during egg development, which affect 
spawning success and thus the cohort strength.

Jun– Sep upwelling
AF: St
GS+AF: Wt
GS: Wt+1, St+1

Upwelling drives phytoplankton blooms which bring fish closer to the coast (and the fishery) 
and which promote larval and juvenile growth and survival. However extreme upwelling 
advects phytoplankton biomass offshore and brings hypoxic water to the surface.

Mar– May r- SST
AF: St
SS: Wt, Wt+1, St+1

Extreme pre- monsoon heating events drive mature fish from spawning areas, resulting in poor 
recruitment and fewer 0- year fish.

Oct– Dec ns- SST
GS: Wt, Wt+1, St+1

October– December are the peak somatic growth months, and larval and juvenile growth and 
survival are affected by temperature in the nearshore feeding area.

Jul– Sep and Oct– Dec CHL
AF: St
GS+AF: Wt
GS: Wt+1, St+1

Surface chlorophyll- a concentration is a proxy for phytoplankton abundance. Peak 
chlorophyll- a concentration is in July– September while October– December are critical 
months for juvenile growth and survival.

2.5- year average r- SST
IA: St, Wt, Wt+1, St+1

Spawning, early survival, and recruitment depend on many cascading factors summarized by 
the average regional SST over the lifespan of an oil sardine.

ONI, PDO, AMO
IA: St, Wt, Wt+1, St+1

The large- scale ocean climate has impacts on precipitation, SST, wind, currents and upwelling 
patterns in the southwestern Indian Ocean. These in turn have cascading impacts on 
spawning, early survival and abundance.

Sep– Nov DMI
GS+AF: Wt
GS: Wt+1, St+1

Negative DMI values in September– November are associated with anoxic events along the 
Kerala coast which drive fish offshore and reduce juvenile growth and survival.

Model codes: AF, availability to the nearshore fishery (movement inshore increases availability while movement offshore reduces availability); 
GS, growth and survival; IA, integrated abundance; SS, spawning success. Environmental covariates codes: r- SST, regional (0– 160 km) sea surface 
temperature; ns- SST, nearshore (0– 80 km) sea surface temperature; CHL, chlorophyll- a surface concentration; ONI, Oceanic Niño Index; DMI, Dipole 
Mode Index; PDO, Pacific Decadal Oscillation index; AMO, Atlantic Multidecadal Oscillation index.
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fuels productivity but at high levels brings low oxygen water to the 
surface which can cause fish to move offshore where they are inac-
cessible to the fishery, while downwelling during spring is thought 
to promote the spring migration of adults into the nearshore where 
they are exposed to the fishery (Hamza et al., 2020). Correlations 
have been identified between landings and various indices of up-
welling intensity (Hamza et al., 2020; Jayaprakash, 2002; Kripa et al., 
2015; Longhurst & Wooster, 1990; Madhupratap, Shetye, Nair, & 
Nair, 1994; Murty & Edelman, 1966; Srinath, 1998; Thara, 2011); di-
rect measures of upwelling- associated productivity (George et al., 
2012; Madhupratap et al., 1994; Manjusha et al., 2013; Menon et al., 
2019; Nair, 1952; Nair & Subrahmanyan, 1955; Piontkovski et al., 
2014; Pitchaikani & Lipton, 2012); and the cold nearshore sea sur-
face temperatures caused by upwelling (Annigeri, 1969; Pillai, 1991; 
Prabhu & Dhulkhed, 1970; Supraba et al., 2016).

In addition, to these regional environmental variables, climate 
teleconnection indices which capture large- scale ocean modes have 
also been examined for association with fisheries landings. Large- 
scale ocean climate modes, such as the El Niño– Southern Oscillation 
(ENSO), Indian Ocean Dipole (IOD) and Atlantic Multidecadal 

Oscillation (AMO), have cascading effects on a variety of ocean con-
ditions that affect small pelagics (Alheit et al., 2019; Alheit & Hagen, 
1997; Bakun et al., 2008; Schwartzlose et al., 2010). Correlations have 
been found between ocean climate indices and oil sardine landings 
(Hamza et al., 2020; Rohit et al., 2018; Supraba et al., 2016), as well as 
with coastal anoxic events (Vallivattathillam et al., 2017) and chloro-
phyll blooms (Currie et al., 2013) in our study region.

This long and rich history of research on the Indian oil sardine 
provides a strong foundation for selecting and specifying the envi-
ronmental factors that are most likely affecting the abundance and 
catchability of this important commercial species. In this paper, we 
study the utility of using these environmental covariates to improve 
out- of- sample landings predictions for the oil sardine, with the ulti-
mate goal of improving short- term operational forecasts.

1.1  |  Modeling and forecasting fishery landings

The modeling and forecasting of landings using time- series mod-
els have a long history in fisheries research (Cohen & Stone, 1987; 

F I G U R E  1  The study area, located off the southwestern coast of India. Kerala is shaded dark gray
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Farmer & Froeschke, 2015; Georgakarakos et al., 2006; Hanson et al., 
2006; Lawer, 2016; Lloret et al., 2000; Mendelssohn, 1981; Nobel & 
Sathianandan, 1991; Prista et al., 2011; Stergiou & Christou, 1996), in-
cluding for oil sardines (Sajna et al., 2019; Srinath, 1998; Venugopalan & 
Srinath, 1998). These models can be used to identify variables correlated 
with catch fluctuations and to provide short- term landings forecasts, 
which are useful for fishery managers (e.g., Farmer & Froeschke, 2015) 
and the fishing industry (e.g., Hanson et al., 2006; Schaaf et al., 1975).

One of the interesting puzzles in research on landings forecast-
ing, and forecasting in general, is that it is often difficult to improve 
on simple low- dimensional autoregressive forecast models, that is a 
forecast that is a simple function of past values (Ward et al., 2014), 
and adding environmental covariates often degrades the forecast 
due to the added parameter estimation costs. The Indian oil sardine 
offers a unique opportunity to study the utility of environmental 
covariates for landings forecasts because there is extensive prior 

F I G U R E  2  Seasonal average winds, sea surface temperature (SST) and currents during the summer monsoon versus the winter non- 
monsoon months in the study area. Winds and SST are from the Reanalysis Data ERA5 monthly product and averaged over 1979– 2020. 
The bottom panels show the main seasonal currents near the study area: the West India Coastal Current going north in winter and south in 
summer and the Summer Monsoon Current going west to east near 8°N. The dark blue line is the 200m bathymetry line and the grey shaded 
region is Kerala
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research of the environmental variables that influence the oil sar-
dine's ocean environment and its exposure to the fishery and there 
is a long- term quarterly catch time series derived from a large- 
scale stratified statistical survey beginning in the 1950s (Srinath, 
Kuriakose, & Mini, 2005).

We first developed an autoregressive base catch model using 
only the prior- year landings to explain the current- year landings. 
Environmental covariates were then added to the base model, and we 
examined whether the covariate decreased the out- of- sample predic-
tion errors and explained catch variability beyond that explained by 
the base model. We tested models with linear, non- linear and time- 
varying covariate effects. We focused primarily on covariates derived 
from remote- sensing products due to their broad spatial availability 
and temporal resolution, which make them practical for future oper-
ational forecasting efforts. The covariates were selected based on 
prior research supporting their correlation with nearshore produc-
tivity, juvenile growth and survival, and movement into or out of the 
nearshore (where they are exposed to the fishery); see Table 1.

1.2  |  Study area

The study area is located off the Kerala coast of India (Figures 1 and 
2), where the majority of Indian oil sardines are landed and where this 
species comprises about 40% of the marine fish catch (Srinath, 1998; 
Vivekanandan et al., 2003). It is in the Southeast Arabian Sea, one 
of the world's important seasonal upwelling zones (Habeebrehman 
et al., 2008; Madhupratap et al., 2001). The portion of the study 
area falling between 9°N and 13°N has especially intense upwelling 
in June– September due to the combined effects of wind stress 
(Figure 2) and remote forcing (BR, 2010; BR, Sanjeevan, Vimalkumar, 
& Revichandran, 2008; Shah et al., 2019). Upwelling gives rise to 
a strong temperature differential between the nearshore and off-
shore, and high primary productivity and surface chlorophyll (BR, 
2010; Chauhan et al., 2011; Habeebrehman et al., 2008; Shafeeque 
et al., 2019). Primary productivity subsides after September, whereas 
mesozooplankton abundances increase and remain high in the post- 
monsoon period (Madhupratap et al., 2001).

F I G U R E  3  Key oil sardine life history events (top colored bars), overlaid on the monthly nearshore and offshore sea surface temperatures 
(SSTs; °C) and nearshore chlorophyll- a (Chl- a) concentrations (mg m−3)
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1.3  |  Oil sardine life cycle and fishery interaction

The Indian oil sardine fishery is restricted to the narrow strip of the 
western Indian continental shelf, <20 km offshore (Figure 1; Rohit 
et al., 2018). The yearly cycle begins with spawning in June and July, 
corresponding to the onset of the summer monsoon (Antony Raja, 
1969) and much lower nearshore SSTs due to upwelling (Figure 3). 
Mature fish migrate from offshore to spawning areas (Antony Raja, 
1964), and spawning begins when temperature, salinity, and 
food availability are conducive to larval survival (Jayaprakash & 
Pillai, 2000; Krishnakumar et al., 2008; Murty & Edelman, 1966; 
Nair et al., 2016). After an initial peak, spawning continues into 
September (Antony Raja, 1969; Hornell, 1910; Hornell & Nayudu, 
1924; Prabhu & Dhulkhed, 1970). Both early-  and late- spawning co-
horts are evident in the length distributions of fish in the fall catch. 
After spawning, adults migrate closer to the coast (Figure 1), where 
the spent fish become exposed to the fishery and landings begin 
to increase. Catches during summer are dominated by these 1-  to 
2.5- year- old mature fish (Antony Raja, 1969; Bensam, 1964; Nair 
et al., 2016).

Spawned sardine eggs develop rapidly into larvae (Nair, 1959). 
The phytoplankton bloom that provides food for the larvae depends 
on nutrient influx from coastal upwelling and runoff from rivers 
during the summer and early fall (Shafeeque et al., 2019). Blooms 

start near the southern tip of India in June, then increase in intensity 
and expand northward with the peak of bloom intensity remaining 
south of 13°N, the northern end of Kerala (BR, 2010). Variation in 
the bloom initiation time and intensity leads to changes in the food 
supply, and thus in larval growth and survival and subsequent re-
cruitment of 0- year sardines into the fishery (George et al., 2012). 
Oil sardines grow rapidly in the first few months of life, and spikes of 
0- year fish from early spawning appear in the August and September 
catches in most years (Antony Raja, 1970; Nair et al., 2016). During 
late- summer and fall, both adult and juvenile sardines shoal and feed 
in the nearshore following the intense plankton blooms that develop 
off the Kerala coast. Oil sardines remain inshore to feed through 
winter and peak catches occur in October– December followed by 
January– March (Figure 4). These post- monsoon, October– March, 
catches are mixed age including fish from 0 to 2 years (Antony Raja, 
1970; Nair et al., 2016; Prabhu & Dhulkhed, 1970; Rohit et al., 2018). 
In March– May, the sardines move offshore to deeper water where 
they are no longer available to the fishery, landings consequently 
decline (Figure 4), and the seasonal cycle begins anew.

Landings are products of abundance, effort, and catchability 
(i.e., availability to the nearshore fishery). For much of the period 
of our study, the Indian oil sardine fishery was largely unregulated 
and has been a nearshore fishery dominated by small boats. For this 
time period, the yearly landings are often assumed to reflect total 

F I G U R E  4  Top panel: Quarterly catch 
data for 1956– 2015 from Kerala. Note 
that the fishery is closed July 1– mid- 
August, meaning that the quarter 3 catch 
represents only 1.5 months. Mean catches 
in quarters 1– 4 were 38, 19.2, 30.9, and 
59.9 metric tons, respectively. Bottom 
panel: The seasonal time series (July– 
September and October– March catch) 
used in the paper
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abundance for species-  and fishery- specific reasons (cf. Kripa et al., 
2018). The ring seine was introduced in this fishery in the 1980s 
(Das & Edwin, 2018), but widespread mechanization of the fleet is 
a recent development. Fishers with small boats with no refrigera-
tion have limited ability to target stock, at least not to the degree 
that landings would remain constant as abundance declines, as can 

be seen with a large, mobile, highly mechanized fleet. The fishery is 
unregulated, except for a brief closure during the summer monsoon, 
and thus landings are not affected by area closures or catch limits. 
Finally, the fishery is dispersed along the entire coastline, rather 
than being focused from a few large ports. Thus, the relationship 
between landings and abundance can be assumed to be strong for 

F I G U R E  5  Four of the remote- sensing covariates used in the analysis. All data are monthly averages. The upwelling index was defined as 
the difference between the nearshore and 3° longitude offshore sea surface temperatures (SSTs). Surface chlorophyll- a data are available 
only from September 1997 onward. SSTs were obtained from Advanced Very High Resolution Radiometer (AVHRR) products which provide 
high resolution nearshore measurements
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our data set and comparison of the landings to the available catch- 
per- unit effort (hours fishing) data shows high correlation (Hamza 
et al., 2020). Seasonal variation in the oil sardine catch is affected 
both by movement of fish in and out of the nearshore (Figure 1) and 
recruitment of juvenile fish to the fishery.

2  |  MATERIAL S AND METHODS

2.1  |  Sardine landing data

The Central Marine Fisheries Research Institute (CMFRI), Kochi, 
India, has collected quarterly fish landing data along the country's 
southwestern coast since the early 1950s using a stratified multi-
stage sampling design which accounts for the different boat and 
gear types (Srinath et al., 2005). We used CMFRI data from the 
Indian state of Kerala (Figure 1), which has the longest and most 
complete time series and where the overwhelming majority of oil 
sardines are landed (Figure 4). Quarterly oil sardine landings data 
(in metric tons) for all gear types used in Kerala were obtained from 
CMFRI reports (1956– 1984) and online databases (1985– 2015). See 
the Supplemental Information: Data sources and raw data. These 
data were log transformed to stabilize variance and to facilitate ad-
ditive modeling.

2.2  |  Environmental data

We analyzed monthly composites of SST, chlorophyll- a concentra-
tion, precipitation, upwelling indices derived from SST and winds, and 
ocean climate indices (Figures 2 and 5). For each covariate, specific 
months (seasons) were used corresponding to different aspects of 
oil sardine life history and its interaction with the nearshore fishery. 
These are summarized in Table 1. See the Supporting Information: 
Data sources and raw data for all environmental data details, sources 
and code to compute metrics and download the data.

We tested SST (°C) averaged between 8° and 13°N in the near-
shore (within 1° of the coast) in June– September (summer monsoon 
period of peak upwelling, spawning, larval growth, and survival) and 
October– December (peak juvenile somatic growth). SST in the cur-
rent year could affect landings by causing fish movement in and out 
of nearshore and/or affecting juvenile abundance while prior- year 
effects would arise via effects on cohort strength. We tested SST 
regionally, between 8° and 13°N and up to 2° offshore, in the spring 
(March– May) and over the prior 30 months (January t- 2 to June t). 
The former may affect egg development, spawning, and inshore 
migration timing thus affecting both current and future year abun-
dance and availability to the fishery. The latter integrates effects of 
SST over the average sardine life span and has been shown to be 
correlated with recruitment in other sardine species (Checkley et al., 
2017). For our SST source, we used the Daily Optimum Interpolation 
(OI), version 2.1 data set by the Group for High Resolution Sea 
Surface Temperature (GHRSST). This data set uses Advanced Very 

High Resolution Radiometer (AVHRR) data, which provides ac-
curate nearshore SST values, and interpolates to fill in gaps in the 
AVHRR data. See the section on comparison of SST products in the 
Supplemental Information: Full model tests and diagnostics. We used 
OI SST for all the main analyses which use landings data after 1981. 
For our analysis of the effect of the regional-  (as opposed to near-
shore- ) SST prior to 1981, we used the International Comprehensive 
Ocean- Atmosphere Data Set (ICOADS) SST product, available from 
1960. The nearshore (<80 km) ICOADS SST measurements are not as 
accurate as AVHRR and could not be used for our covariates involv-
ing nearshore SST, such as the nearshore- offshore SST differential.

The strength of upwelling during the summer monsoon June to 
September has been widely studied for its effects on coastal produc-
tivity and coastal anoxia. The upwelling dynamics in our study area 
are unusual in that remote oceanographic forcing is an especially im-
portant driver of the seasonal upwelling intensity in combination with 
forces from local wind stress (BR, 2010; BR et al., 2008; Rao et al., 
2008). We used a variety of SST-  and wind- based indices that have 
been used in recent papers on upwelling dynamics off the southwest 
coast of India. We tested both current- year effects which could arise 
via effects on abundance or lower catchability due to movement off-
shore to avoid nearshore anoxia and prior- year effects which would 
arise via cohort strength in the prior year. The first index was the SST 
differential between nearshore and 3° longitude offshore, based on 
Naidu et al. (1999) and BR et al. (2008). This index has a strong tem-
poral association with chlorophyll- a blooms (Figure 3) and is able to 
measure upwelling arising due to both remote- forcing and local wind 
stress. SSTs were obtained from the AVHRR remote- sensing data set 
described above. The second index was the Ekman Mass Transport 
(EMT; kg m−1 s−1) perpendicular to and within 2° longitude of the coast 
(Schwing et al., 1996; Shafeeque et al., 2019). The third index was 
the Ekman Pumping (We; m s−1) at the tip of India (Shah et al., 2019). 
EMT and We are computed from surface winds and capture upwelling 
due to local wind stress. We used the Reanalysis Data ERA5 monthly 
10 m winds from the European Centre for Medium- Range Weather 
Forecasts. See the Supplemental Information: Ekman Mass Transport 
and Pumping Calculations for the equations and code for computing 
EMT and We from surface winds and for a comparison of the ERA5 
winds to other remote- sensing wind products.

Precipitation over land and over the ocean during the summer 
monsoon (June to September) and spring (April to May) were tested 
in both the current and prior year. Precipitation over land leads to 
river discharge, which has various and large influences, positive and 
negative, on the nearshore ocean environment. Precipitation data 
were obtained from two sources: monthly precipitation (in millime-
ters) over Kerala, obtained with land- based rain gages and available 
from the Indian Institute of Tropical Meteorology from 1956; and 
daily precipitation (averaged monthly) over the ocean from remote- 
sensing (via the NOAA Global Precipitation Climatology Project). 
From the latter, we extracted data for the 2.5°× 2.5° box defined by 
latitude 8.75– 11.25°N and longitude 73.25– 75.75°E off the Kerala 
coast. The land and nearshore ocean precipitation data are cor-
related (Supporting Information; Figure S6).
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Satellite- derived chlorophyll- a data are only available since 
September 1997 and were not the focus of our analysis due to low 
sample size, however, were included for preliminary study. We ex-
amined current and prior- year effects of chlorophyll- a concentration 
in the summer monsoon (June to September) period of peak upwell-
ing and peak blooms (Figure 3) and in the October to December 
period of peak juvenile somatic growth. For chlorophyll- a concen-
tration (mg m−3), we used the R2018.0 and R2018.1 products devel-
oped by the NASA Ocean Biology Processing Group of the Ocean 
Ecology Laboratory.

We used four climate indices that have been found to correlate 
with either oil sardine landings, coastal anoxia, chlorophyll- a concen-
tration, or upwelling intensity in recent studies: Oceanic Niño Index 
(ONI), the Dipole Mode Index (DMI), the Pacific Decadal Oscillation 
(PDO) index, and the Atlantic Multidecadal Oscillation (AMO) 
index. The ONI is a measure of the SST anomaly in the east- central 
Pacific and a standard index of the ENSO cycle. The DMI is defined 
by the SST anomaly difference between the western and south-
eastern Indian Ocean and is an index for the Indian Ocean Dipole 
cycle. It has been shown to predict anoxic events in our study area 
(Vallivattathillam et al., 2017) and seasonal chlorophyll- a blooms in 
the southeastern Indian Ocean (Currie et al., 2013). The PDO and 
AMO indices are measures of the SST anomalies in the North Pacific 
and North Atlantic Oceans, respectively. Hamza et al., (2020) found 
significant correlation between PDO and AMO indices and multiyear 
fluctuations in oil sardine landings. For ONI, PDO, and AMO indices, 
we created an annual covariate from the average July t- 1 to June t 
values. The yearly average was computed this way so that it would 
not overlap with the July– September catch that we are forecasting.

2.3  |  Base catch models

The first step in our analysis was to determine our base models 
for current catch as a function of past catch. We modeled July– 
September (late- monsoon) and October– March (post- monsoon) 
catches separately, for biological and statistical reasons. Unlike the 
October– March catch, the July– September catch contains mainly 
mature spawning- age fish, is affected by the monsoon fishery clo-
sure, and is affected by the timing of post- spawning movement in-
shore which exposes fish to the fishery. The covariates that affect 
the timing of spawning and post- spawning inshore movement may 
differ from those that affect egg, larval and juvenile survival, and 
nearshore shoaling (and thus the size of the October– March catch). 
Separating the catches into seasons, and analyzing annual series, 
eliminated the confounding influence of seasonality and permitted 
a focus on year- to- year variability rather than the seasonal cycle. 
Although adults in July– September would be those that spawn the 
0- year fish in the October– March catch, the July– September catch 
in year t was not used as a predictor for October– March catch in year 
t. The focus of our work is the study of forecasting performance; the 
July– September catch numbers would not be available by October 
(the quarter immediately after).

We found little support for autoregressive errors, that is, 
Autoregressive Integrated Moving Average (ARIMA) models with 
moving average (MA) components, based on diagnostic tests of the 
residuals and model selection. The best- supported ARIMA models 
were simple AR models (xt = � + �xt−1 + �t) where the error- term 
�t was temporally independent. Similar lack of strong autocorrela-
tion in residuals has been found in other studies using ARIMA catch 
models for small pelagics (Stergiou & Christou, 1996). We thus used 
AR- only models; however, we tested linear and non- linear models 
with generalized additive models (GAMs; Wood, 2017) of the form 
xt = � + s

(

xt−1
)

+ �t, where s() is a non- linear spline smoothing func-
tion, and time- varying linear models with dynamic linear models 
(DLMs) of the form xt = �t + �txt−1 + �t. GAMs enable modeling of 
the effect of a covariate as a flexible non- linear function, and DLMs 
allow the effect of the covariate to vary over time. Our GAM ap-
proach is analogous to that taken by Jacobson and MacCall (1995) in 
a study of the effects of SST on Pacific sardine recruitment.

We explored four classes of base catch models: a naïve (null) 
model, linear regressive models with 1– 2 years of prior catch data, 
DLMs (using the MARSS package in R; Holmes et al., 2012), and 
GAMs (using the mgcv package in R; Wood, 2011). We fit GAMs with 
smooth terms represented by penalized thin- plate regression splines 
and fixed the smoothing term at an intermediate value (sp = 0.6) to 
obtain smooth responses, as multimodal or overly flexible response 
curves would not be realistic for our application. The catch models 
were:

• naïve (null): ln
(

Ci,t

)

= ln
(

Cj,t−1

)

+ �t

• biased random walk: ln
(

Ci,t

)

= � + ln
(

Cj,t−1

)

+ �t

• linear AR- 1: ln
(

Ci,t

)

= � + �ln
(

Cj,t−1

)

+ �t

• linear AR- 2: ln
(

Ci,t

)

= � + �1ln
(

Cj,t−1

)

+ �2ln
(

Ck,t−2

)

+ �t

• DLM AR- 1: ln
(

Ci,t

)

= �t + �tln
(

Cj,t−1

)

+ �t

• GAM AR- 1: ln
(

Ci,t

)

= � + s
(

ln
(

Cj,t−1

))

+ �t

• GAM AR- 2: ln
(

Ci,t

)

= � + s1
(

ln
(

Cj,t−1

))

+ s2
(

ln
(

Ck,t−2

))

+ �t,

ln
(

Ci,t

)

, ln
(

Cj,t−1

)

, ln
(

Ck,t−2

)

 are the log catches. t, t- 1, and t- 2 de-
note current, prior year, and two years prior. i, j and k denote the sea-
son: July– September (denoted S for late- summer) or October– March 
(denoted W for winter) catch depending on the model.

We tested models with October– March (Wt- 1 and Wt- 2), and 
July– September (St- 1 and St- 2) catches 1 and 2 prior years as the ex-
planatory catch variables (the Cj,t- 1 and Ck,t- 2). St was not used as a 
predictor for Wt because it is the immediately preceding quarter.

The catch models were fit to 1983– 2015 catch data, the time 
period for which our SST, upwelling, and precipitation data were 
available for all years; we used the same years of catch data for all 
covariate tests. Akaike information criterion corrected for small 
sample size (AICc) and leave- one- out cross- validation (LOOCV) 
were applied to nested sets of models to evaluate model support. 
LOOCV involves model fitting with the omission of a data point, 
followed by prediction of that data point. The root mean- squared 
error (RMSE) and median absolute error (MdAE) are reported for the 
set of LOOCV prediction errors. After selection of the best model 
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using the 1983– 2015 data, fitting was repeated with catch data from 
1956– 1982 to confirm the base catch model. An influential years 
test was performed by removing each year in the series sequentially 
and repeating the model selection analysis (Supporting Information: 
Validation of catch base models, Figures S1– S5).

2.4  |  Covariate analysis

Once the base catch models were determined, the environmental 
covariates (Section 2.2) were studied. The covariate models were se-
lected to test specific hypothesized drivers of catch variability based 
on how and when environmental variables are thought to affect 
oil sardine survival and recruitment and to affect availability to the 
fishery (summarized in Table 1 and Section 2.2). As with the catch 
models, support was evaluated using AICc and LOOCV with nested 

sets of models. The full sets of nested models are shown in the ap-
pendices (Tables A1 and A2) and Supplement Table S7. Models with 
covariates (V) with linear and non- linear (GAM) effects were com-
pared: ln

(

Ci,t

)

= M + � + �Vt + �t and ln
(

Ci,t

)

= M + � + s
(

Vt

)

+ �t

, where M is the best catch model from the preliminary model fit-
ting step described above. The smoothing term for the GAM models 
was fixed at an intermediate value (sp = 0.6). Note, in all cases, prior 
catch was the most important variable; that is, the environmental 
covariates were never more important than prior catch in terms of 
explaining variance.

Research has suggested that nutrient input from river dis-
charge is necessary in order for upwelling to fuel high nearshore 
productivity (Shafeeque et al., 2019). To test this, models with 
a linear or non- linear upwelling- precipitation interaction were 
also tested: ln

(

Ci,t

)

= M + � + �1V1,t + �2V2,t + �3V1,tV2,t + �t and 
ln
(

Ci,t

)

= M + � + s1
(

V1,t

)

+ s2
(

V2,t

)

+ ti
(

V1,t,V2,t

)

+ �t, where ti( ) is 

TA B L E  2  Best- performing GAM models for the July– September (St) and October– March (Wt) catches. M is the base model with only prior 
catch as covariates. To the base models, the environmental covariates are added. Nearshore SST is 0– 80 km from the coast and regional SST 
is 0– 160 km. The full set of nested covariate models with all tested environmental variables are given in Tables A1, A2 and Table S7

Model Res. df Adj. R2 RMSE AICc
LOOCV
RMSE

LOOCV
MdAE

July– Sept catch 1983– 2015

Null model:ln
(

St

)

= ln
(

St−1

)

+ �t 33 1.60 126.6 1.60 0.56

M0:ln
(

St

)

= � + s
(

ln
(

Wt−1

))

+ �t 30 21.7 1.20 115.2 1.31 0.69

Covariate model: ln
(

St

)

 = M0 + s (V)

V = Jun– Sep nearshore SST t 27.4 32.5 1.07 115.2 1.31 0.62‡‡

V = Jun– Jul precipitation over land t 28 29.9 1.10 115.3 1.33 0.62‡‡

V = 2.5- year ave. regional SST t 28.1 47 0.96 105.7‡‡ 1.38 0.56‡‡

V = AMO ave. Jul– Jun t 27.5 47.5 0.94 106.6‡‡ 1.22‡ 0.56‡‡

October– March catch— simpler model 1983– 2014

Null model:ln
(

Wt

)

= ln
(

Wt−1

)

+ �t 32 1.00 92.9 1.00 0.26

M1:ln
(

Wt

)

= � + s
(

ln
(

Wt−1

))

+ �t 29.1 45.9 0.82 87.7 0.96 0.32

Covariate model: ln
(

Wt

)

 = M1 +s (V)

V = Jun– Jul precipitation over land t 26.9 59.6 0.69 82.1‡‡ 0.91‡ 0.25‡‡‡

V = 2.5- year ave. regional SST t 27.1 65.9 0.63 76.4‡‡ 0.77‡‡ 0.41

V = Sep– Nov DMI t−1 26 44.4 0.79 94.3 0.95 0.34

V = AMO ave. Jul– Jun t 26.6 63.8 0.64 79.4‡‡ 0.81‡‡ 0.38

October– March catch— more complex model 1983– 2014

M2:ln
(

Wt

)

= � + s
(

ln
(

Wt−1

))

+ s
(

ln
(

St−2

))

+ �t 26.6 57.3 0.70 84.6 1.06 0.34

Covariate model: ln
(

Wt

)

 = M2 +s (V)

V = Jun– Jul precipitation over land t 24.6 70.5 0.56 77.5‡‡ 0.96‡ 0.29‡‡

V = 2.5- year ave. regional SST t 24.8 69.5 0.57 78.1‡‡ 0.82‡‡‡ 0.35

V = Sep– Nov DMI t−1 23.8 69.1 0.56 81.1‡ 0.87‡‡ 0.34

V = AMO ave. Jul– Jun t 24.3 65.6 0.60 83.1 0.91‡‡ 0.29‡‡

AICc, Akaike Information Criterion corrected for small sample size; LOOCV, Leave one out cross- validation; MdAE, median absolute error; RMSE, 
root mean square error. Res. df, residual degrees of freedom; Adj. R2, adjusted R2.
and † † =AICc > 2 and >5 below base catch model (M). ‡, ‡ ‡, and ‡ ‡ ‡ =LOOCV RMSE and MdAE 5%, 10% and 20% below model M, respectively. t 
indicates the covariate from the current year while t- 1 indicates from the prior year. For covariates that are multiyear, t is the last calendar year (i.e., 
the 2014 multiyear average regional SST is January 2012 to June 2014). The equations with s() are GAM models where the covariates has a non- linear 
response (defined by a spline based smoothing function). The full set of nested tests for the base catch models (no environmental covariates) are 
given in the Supporting Information, Tables S1– S6.
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a tensor product interaction (non- linear interaction). Chlorophyll- a 
was not included in the main analyses since it is only available since 
September 1997. Instead, a separate analysis using 1997– 2015 data 
was performed using chlorophyll- a alone as a covariate. Lastly, a 
DLM covariate model was used to explore models with changing 
effects of SST, AMO, and precipitation: ln

(

Ci,t

)

= M + �t + �tVt + �t.
All statistical analysis was completed in the R programming lan-

guage (R Development Core Team, 2019) using the mcgv (Wood, 
2011) and MARSS (Holmes et al., 2012) R packages.

3  |  RESULTS

3.1  |  Base catch model selection

For 1983– 2015 July– September catches, models with the October– 
March catch in the prior year [ln(Wt- 1)] were strongly supported over 
the naïve model and over models with the prior- year July– September 
catch [ln(St- 1)], and models with catch two years prior (Tables S1 and 
S2). Including prior catch with a non- linear response improved model 
fit and reduced LOOCV RMSE (Table S2). Three models had almost 
identical AICc and LOOCV RMSE (maximum adjusted R2 = 21.7): 
linear and non- linear models with ln(Wt- 1) only, and a non- linear 
model with ln(Wt- 1) and ln(Wt- 2). Similar model selection results were 
obtained for the October– March landings (Tables S4 and S5), but 
these models explained much more variance (maximum adjusted R2 
= 57.3). The best- supported model, based on AICc and F values, was 
the non- linear model with ln(Wt- 1) and ln(St- 2) (Table 2, S4 and S5). 
The simpler model with only ln(Wt- 1) had the second lowest AICc but 
lowest LOOCV RMSE values.

Repeating the model selection using 1956– 1982 data yielded 
the same results for the July– September catch, with the non- linear 
model with ln(Wt- 1) having the lowest AICc and LOOCV RMSE val-
ues (Table S3). For the October– March catch, the results were very 
similar, but not identical. The non- linear model with ln(Wt- 1) had 
the lowest LOOCV RMSE and AICc values, while the models with 
ln(Wt- 1) and ln(St- 1) or ln(St- 2) had the second and third lowest AICs, 
although the difference from the AICc for the ln(Wt- 1) model was 
<3 (Table S6). The DLMs (time- varying effects) performed poorly 
for the July– September catch, with high AICc and LOOCV RMSE 
values. One DLM for the October– March catch showed mixed 
performance, with a higher AICc but lower LOOCV RMSE value. 
Overall, the model selection indicated that a catch model with a 
time- varying effect of prior catch did not improve either model fit 
or out- of- sample prediction, but inclusion of a non- linear effect 
was important.

We chose the non- linear model with ln(Wt- 1) as the base catch 
model for the July– September catch based on further diagnostic 
tests (Supporting Information: Validation of catch base models) and 
to minimize the loss of degrees of freedom from an additional co-
variate, ln(Wt- 2).

M0: − ln
(

St
)

= � + s
(

ln
(

Wt−1

))

+ �t (adj. R2 = 21.7)
Two non- linear base models were chosen for the October– 

March catch:

M1: − ln
(

Wt

)

= � + s1
(

ln
(

Wt−1

))

+ s2
(

ln
(

St−2
))

+ �t (adj. R2 = 45.9)
M2: − ln

(

Wt

)

= � + s
(

ln
(

Wt−1

))

+ �t (adj. R2 = 57.3)

Both models were included as base models for the October– 
March catch as one had the best model fit while the other had better 
out- of- sample prediction. Both were supported based on the influ-
ential years analysis (Supporting Information; Figures S1– S5).

3.2  |  Environmental covariate selection

The covariate analysis was able to rule out a number of the tested 
covariates. Specifically, we found no support for the use of April– 
May or June– July precipitation over the ocean, in the current or prior 
season or as a linear or non- linear effect, as an explanatory variable 
for the July– September or October– March catch (Tables A1, A2, and 
S7). We also found no support for the use of March– May (current 
or prior year) or October– December SST as an explanatory variable 
for the July– September or October– March catch (Tables A1, A2, and 
S7). In general, all the indices of upwelling in the current or prior 
year were either not or only weakly supported (based on AICc) and 
did not improve out- of- sample prediction (LOOCV RMSE or MdAE) 
(Tables A1, A2, and S7). The one exception was the July– September 
catch and the June– September nearshore SST upwelling index in the 
current year and Ekman Pumping in the prior year. These reduced 
the LOOCV MdAE prediction errors but did not reduce the LOOCV 
RMSE errors or AICc for the July– September catch (Table A1). The 
Ekman Mass Transport (EMT) upwelling index did not improve the 
model fit (AICc) or prediction errors (Table A1 and A2). Recent re-
search (Shafeeque et al., 2019) suggests that there is an interaction 
between upwelling and precipitation, such that both anomalous 
precipitation over land and upwelling intensity during the summer 
monsoon is needed for strong chlorophyll- a blooms. Our tests using 
a variety of interaction models showed that while models with in-
teractions increased the R2, the increased parameter cost led to 
higher AICc and higher out- of- sample prediction errors (Table A8). 
Note, the July– September upwelling indices overlap with the July– 
September catch and thus would not be useful for forecasting July– 
September catch but were tested to understand the utility of the 
upwelling indices. We also found no support for using the ONI or 
PDO index to improve either the July– September or October– March 
catch predictions. The fall DMI in the prior year reduced AICc and 
LOOCV RMSE and MdAE but only for October– March catch with 
the more complex model (Table 2 and S7).

Only three covariates emerged as explanatory variables that 
both explained catch variance (lower AICc) and reduced out- of- 
sample predictions errors across models and across different time 
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periods: the June– July precipitation over land, the 2.5- year average 
regional SST, and the AMO index. The best models included non- 
linear response curves (Figure 6). For the July– September catch, the 
best models had an adjusted R2 of 29.9, 47, and 47.5 (precipitation, 
SST, and AMO, respectively) versus 21.7 for the model without the 
covariate (Tables 2 and A1), and for the October– March catch, the 
adjusted R2 was 59.6, 65.9 and 63.8 (precipitation, SST and AMO) 
versus 45.9 using the simpler base model without covariates and 
70.5, 69.5 and 65.6 versus 57.3 with the more complex base model 
(Tables 2, A2, and S7). These covariates reduced the median out- 
of- sample prediction error (LOOCV MdAE) by up to 19% for the 
July– September catch and the root mean- squared and median out- 
of- sample prediction errors (LOOCV RMSE and MdAE) by up to 22% 
for the October– March catch relative to the base model without en-
vironmental covariates (Tables 2, A1, A2, and S7). Figure 7 illustrates 
the reduction in prediction errors using the 2.5- year average re-
gional SST as an example (the other covariates are shown in Figures 
A1 and A2).

Our examination of the chlorophyll- a covariate was limited, as 
the simplest model including the chlorophyll- a concentration re-
quired five degrees of freedom, and catch size varied little in the 
period for which we had chlorophyll- a data. The fitting of second- 
degree polynomial models to the average log chlorophyll- a concen-
trations in July– September and October– December of the current 
and prior years yielded no significant result for the July– September 
catch, but we found a significant effect of the prior- year October– 
December chlorophyll- a concentration on the October– March catch 
(Tables A1, A2 and S7).

We identified four outlier years in which October– March oil 
sardine landings were much lower than predicted based on prior 
catches: 1986, 1991, 1994, and 2013 (Figure 7c). In the figure, the 
y- axis is the predicted catch in a LOOCV analysis thus is the “left- out” 
year. The model with 2.5- year average regional SST predicted the col-
lapses in 1986 and 1991; the predicted catch sizes with this covariate 
in the model were much closer to the observed catches (Figure 7d). 
The 2.5- year average regional SST did not explain the 1994 collapse, 
the largest during the study period, or the 2013 collapse. The same 
pattern was seen for the July– September catch, with the exception 
that this catch was not unusually low in 1991 (Figure 7a). The 2.5- year 
average regional SST reduced the prediction errors for this catch in 
1986 but did not (appreciably) reduce it for 1994 or 2013 (Figure 7b). 
In fact, no covariate tested in this study explained the 1994 fishery 
collapse (Figures A1 and A2); the prediction error for this year was 
very high regardless of any covariate that was included in the model.

3.3  |  Dynamic linear modeling with SST, AMO and 
precipitation

The ICOADS SST data set does not capture the nearshore SST as 
accurately as AVHRR, and thus was not used for our main analyses. 
Nonetheless the ICOADS regional SST (as opposed to nearshore) 
is highly correlated with the AVHRR regional SST data (Supporting 

Information; Figure S7), and the ICOADS SST data extend almost to 
the start of the catch time series (to 1960). The precipitation data 
and AMO index also extend to 1960. Using the dynamic linear model 
for the October– March catch, we examined whether the explana-
tory power (as measured by model residual errors, i.e., model fit) of 
these three covariates changed over time. Time- varying covariate 
models were fit to the residuals of the simpler base October– March 
catch model; the results were very similar with the more complex 
October– March catch model thus results using only one of the 
October– March base models are shown. The covariates were z- 
scored (mean removed and variance standardized to 1) and included 
as third- order polynomials to allow a non- linear response. The mod-
els took the form rt = �1,tVt + �2,tV

2

t
+ �3,tV

3

t
+ �t where r is the catch 

residual and V is the covariate. The β was allowed to evolve as an 
autoregressive process, �t = �t−1 + et, with et ~N(0, σ). The σ was 
chosen such that the model complexity (time- variation) did not in-
crease out- sample- prediction error over the base catch model (with 
no environmental covariates).

The explanatory power of the covariates, even when allowed 
to be time- varying and thus flexible enough to fit temporally local 
conditions, changed over time. Up to 1990, the land precipitation 
did not increase model fit but did afterward. The 2.5- year average 
regional SST and AMO index improved the model fit over the entire 
time series (meaning the covariate RMSE line was below that of the 
model with no covariates), but especially so from the mid- 1980s to 
late- 1990 s (Figure 8).

4  |  DISCUSSION

Our results indicate that successful modeling of Indian oil sardine 
catch depends on the catch season of interest (monsoon versus post- 
monsoon) and selection of the environmental covariate to use in the 
model. All the covariates we tested were tied to environmental con-
ditions known to impact key life stages of the oil sardine. However 
only two regional covariates, the multiyear average regional SST and 
the monsoon rainfall over land, and one ocean climate index, the 
Atlantic Multidecadal Oscillation index, improved both model fit and 
out- of- sample prediction.

4.1  |  Monsoon versus post- monsoon model 
performance

The July– September catch, which overlaps with the summer monsoon 
and a seasonal fishery closure, is difficult to model. The best July– 
September models with only prior catch as a covariate explained less 
than 22% of the variation while the best model with environmental 
covariates explained only 47% of the variation and had median out- of- 
sample prediction errors of +/−65% (of raw, not log- transformed, catch). 
We found only one covariate that improved the root mean- squared 
out- of- sample prediction error for the July– September catch (the AMO 
index), though a number improved median out- of- sample prediction 
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error. In contrast, variation in the post- monsoon catch (October– March) 
was much better explained. The simpler model with only prior catch as a 
covariate explained 45.9% of the variation and the model with the best 

covariate, explained 65.9%. The best environmental covariate reduced 
the out- of- sample prediction errors (RMSE and MdAE) by ca. 20% and 
explained two of the four recent catch collapses.

F I G U R E  6  Effect sizes for the 2.5- year average regional sea surface temperature (SST; within 2° of the Kerala coast), current- season 
upwelling intensity (average June– September SST nearshore- offshore upwelling index off Kochi, Kerala), current season June– July 
precipitation over land and the Atlantic Multidecadal Oscillation (AMO) index in the prior year on July– September and October– March 
catches. As the upwelling index reflects the difference between offshore and nearshore SST, positive values indicate that coastal surface 
waters are colder than offshore waters. The more positive the difference, the stronger the upwelling intensity
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This result cautions against modeling all quarters of oil sardine 
catch together (as one yearly catch). The July– September catch is 
difficult to model, as it exhibits high variability that is poorly ex-
plained by past catches or environmental factors. The reasons for 
this are likely a combination of variable spawning timing which af-
fects the timing of movement of adults into the nearshore where 
they are exposed to the fishery, the summer monsoon which affects 
fishing operations, and the fishery closure during part of this pe-
riod. In contrast, the October– March catch, which comprises 60– 
80% of the catch from July to June, is much better explained, and 
its forecasts have smaller predictive errors. Forecasting all quar-
ters together as a yearly catch means that the high variability in the 
July– September catch will hide the predictability of the subsequent 
October– March catch.

4.2  |  Sea surface temperature

The SST in October– December, the period of larval and early juvenile 
development, may affect survival and growth in multiple ways and 
thus correlate with biomass in future years. In some years, extreme 
heat events occur in March– May during the period of egg matura-
tion which may affect spawning and thus the current year and future 
biomass. However, we found no correlation of these seasonal SST 

F I G U R E  8  Model fit over 10- year windows for dynamic linear 
models of October– March catch 1960– 2015 using the 2.5- year 
average SST from the ICOADS data set, June– July precipitation 
over land (from land gages), and Atlantic Multidecadal Oscillation 
index as covariates. These models allowed the covariate model 
to evolve over time. The models were fit to the residuals of the 
simpler base model (with only prior October– March catch as a 
covariate) with the 1994 residual removed. The covariates were 
z- scored (mean removed and standardized to variance of 1) and 
included as a third- order polynomial to allow a non- linear effect. 
The plot shows the RMSE of the model residuals computed 
on a 10- year sliding window
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F I G U R E  7  Predicted versus observed 
catches obtained with models with and 
without the 2.5- year average sea surface 
temperature (SST) included as a non- linear 
covariate. The lines indicate a perfect 
prediction where observed catch equals 
the predicted catch. The value to be 
predicted was left out in the model fitting. 
Values above the line are cases where the 
prediction was too high and values below 
the line are cases where the prediction 
was too low. (a) July– September catch, 
modeled with only the prior- season 
October– March catch as a covariate. (b) 
July– September catch, modeled with the 
prior- season October– March catch and 
2.5- year average SST as covariates. (c) 
October– March catch, modeled with the 
prior- season October– March catch only. 
(d) October– March, modeled as in panel c 
with the addition of the 2.5- year average 
SST. LOOCV RMSE =leave- one- out root 
mean- squared prediction error. See 
Figures A1 and A2 for the same plots with 
other environmental covariates
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covariates with the July– September or October– March catch in the 
current or future years.

Instead, we found that the regional SST averaged over the prior 
2.5 years (January t- 2 to June t), corresponding to the life span of 
an oil sardine, emerged as a consistently informative SST covari-
ate. The multiyear average regional SST explained variability in the 
oil sardine landings and improved out- of- sample catch prediction. 
Studies conducted in the California Current System have also found 
that the multiyear average SST explains year- to- year variability in 
Pacific sardine recruitment (Checkley et al., 2009, 2017; Jacobson & 
MacCall, 1995; Lindegren & Checkley, 2013). This covariate has also 
been found to correlate with southern African sardine recruitment 
(Boyer et al., 2001). McClatchie, Goericke, Auad, and Hill (2010) 
found no relationship between SST and Pacific sardine recruitment; 
however, they examined this relationship linearly; in the present 
study, as in the other cited studies, allowance of non- linearity in the 
SST effect was important. Both Jacobson and MacCall (1995) and 
Lindegren and Checkley (2013) found a step- like response function 
for temperature: below a threshold value the effect of temperature 
was linear (and positive) and above the threshold, the effect was 
flat (no longer increased). In the linear portion of the effect curve, 
the point where the effect curve crosses from negative to positive 
represents an important biological threshold. Our analysis found a 
similar effect curve with a negative effect when the 2.5- year aver-
age regional SST was below 28.37°C and positive above and with 
the positive effect leveling off above 28.5°C.

The AMO index (July t- 1 to June t average) is highly correlated 
with the 2.5- year average regional SST covariate used in our anal-
yses (Pearson correlation ρ = 0.70 1983– 2016), unlike the other 
ocean climate indices: ONI ρ = 0.16, PDO index ρ = −0.04 and DMI 
ρ = 0.37 (Supporting Information; Figure S8). Thus, not surprisingly, 
the AMO index also emerged as a consistently informative covari-
ate and provided reductions in out- of- sample prediction error sim-
ilar to the multiyear average SST. None of the other ocean climate 
indices were informative, except the DMI but only in the most 
complex October– March catch model. Teleconnection between 
the AMO and the Indian Ocean has been shown in a number of 
papers (reviewed in Hu, Hu & Hu, 2018; Zhang et al., 2019). In par-
ticular, there appears to be a relationship between the intensity of 
the Indian summer monsoon and the AMO (Lu et al., 2006; Zhang 
& Delworth, 2006). The correlation between oil sardine landings 
and the AMO index that we (and Hamza et al., 2020) found is likely 
a reflection of this large- scale teleconnection that manifests, in 
part, as correlation between regional SST and the AMO index.

4.3  |  Precipitation

Since early studies of oil sardines, precipitation during the summer 
monsoon has been studied as a variable to explain catch fluctuations 
(Antony Raja, 1969, 1974; Murty & Edelman, 1966; Srinath, 1998). 
While correlations have been found, the identified correlations be-
tween precipitation and oil sardine landings have been positive in 

some studies and negative in others (Madhupratap et al., 1994) and 
varied depending on the time period studied. In general, the cor-
relation was assumed to be positive as rainfall is correlated with 
monsoon intensity which is in turn correlated with upwelling and pro-
ductivity. But heavy monsoon rain also has negative effects. During 
heavy rainfall, nutrient and sediments flow into the nearshore region 
from rivers, which leads to short- term eutrophication and anoxia in 
coastal waters (Chauhan et al., 2011).

In our study, we compared rainfall over the ocean (using 
remote- sensing data) and over the land (using land- gauge data). 
Though correlated, these are not identical. We found no cor-
relation between rainfall over the ocean and catch in any com-
bination of our statistical tests. Oceanic rainfall was uniformly 
disinformative— increasing both AICc and out- of- sample predic-
tion errors— across all combinations of models tested. In contrast, 
the June– July precipitation over land in the current season was 
strongly informative and was the only covariate besides the mul-
tiyear average regional SST and AMO index that improved model 
fit and out- of- sample prediction. The effect of precipitation was 
non- linear; close to zero for low to moderate rainfall levels and 
then negative at high precipitation. This suggests that the nega-
tive effect of high rainfall was the dominant impact. The effects 
were only seen on the current- year catch and thus may reflect a 
temporary movement of fish offshore (away from the fishery) to 
avoid anoxia rather than a lower cohort strength that would per-
sist into the next season.

4.4  |  Upwelling

Despite the strong connections of upwelling with productivity which 
positively impacts sardine recruitment, growth, and survival, none 
of the upwelling indices examined in this study (SST- nearshore- 
offshore differential, Ekman Mass Transport, and Ekman Pumping) 
explained year- to- year variation in current- year or prior- year land-
ings or improved out- of- sample forecasts. When we did find a (weak) 
relationship with upwelling intensity and catch, the effect was for 
the current year only and was negative, rather than positive. The 
negative effect emerged at extremely high upwelling. This negative 
effect is not surprising. Extremely high upwelling transports larval 
sardines offshore and brings to the surface poorly oxygenated water 
which sardines avoid (Gupta et al., 2016).

Our tests looked at whether upwelling intensity explained variation 
and future catch beyond what could be explained using a catch model 
with only prior catch as the covariate. It may be that upwelling affects 
the future abundance in a way that is already captured by using prior 
catch. Conversely, it may be that strong upwelling by itself is not suffi-
cient for productivity. Shafeeque et al., (2019) looked at the correlation 
between summer upwelling strength and precipitation and chloro-
phyll- a bloom intensity. They found that chlorophyll- a bloom anoma-
lies were associated with years with both upwelling and precipitation 
anomalies, suggesting an interaction between these two environ-
mental variables. While we found that models with an upwelling and 
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precipitation interaction did have higher R2 relative to an upwelling- 
only or precipitation- only model, they had higher, sometimes consider-
ably higher, out- of- sample prediction errors than the base catch model 
with no covariates or the base catch model with only precipitation. This 
highlights one of the dilemmas of forecasting: increased complexity in 
a model often brings a high prediction cost.

The monthly average upwelling metrics we used are those used 
in many other studies of upwelling and nearshore productivity in this 
region. In most coastal upwelling systems, local wind- stress forces 
are the most important driver of upwelling; however, the southwest 
coast of India is unique in that remote- forcing and local currents and 
gyres play an unusually important role in driving the seasonal up-
welling intensity (BR, 2010; BR et al., 2008; Rao et al., 2008; Shah 
et al., 2019). Our nearshore- offshore SST differential index should 
have captured upwelling intensity due to either wind stress or re-
mote forcing, and we expected that it would perform better than 
the wind- based metrics. However, it was equally uninformative as a 
covariate. It may be that other aspects of upwelling besides average 
nearshore intensity, such as the timing of its initiation (e.g., Barth 
et al., 2007), its spatial extent along the coast or some metric of daily 
extreme events are necessary to capture the conditions relevant to 
oil sardine landings. We did find support for a more direct measure 
of productivity and food availability: the nearshore surface chloro-
phyll- a concentration. Chlorophyll- a concentration in fall, the pe-
riod of peak juvenile somatic growth, explained the October– March 
catch in the next year, reducing out- of- sample prediction errors by 
10% to 20%. With chlorophyll- a data only available after 1997, the 
power of our tests was limited, but this suggests that fall chloro-
phyll- a concentration, after the summer peak chlorophyll- a blooms, 
may prove useful for improving forecasts.

4.5  |  Oil sardine collapses

There were four years when October– March oil sardine landings 
were much lower than expected based on prior catches: 1986, 1991, 
1994, and 2013. The 2.5- year average regional SST was able to ex-
plain the collapses in 1986 and 1991. The largest collapse was in 
1994, when the catch was much lower than expected even taking 
into account the prior- year declines. The most recent collapse, in our 
data set, was 2013. The 2.5- year average regional SST did not suc-
cessfully predict the 1994 or 2013 collapses; although the prediction 
error was reduced for both years, it was still large. The same pattern 
was seen for the July– September catch, with the exception that 1991 
was not unusually low. The 2.5- year average regional SST reduced 
the prediction error for 1986 but did not (appreciably) for 1994 
nor 2013. In fact, none of the covariates we tested explained the 
lower than expected 1994 catch; while only the precipitation over 
land in June– July explained the 2013 collapse (but not 1994, 1991, 
nor 1986). The 1994 collapse was correlated with severe nearshore 
anoxia (Kripa et al., 2015). Since none of the environmental factors 
we studied captured the 1994 decline, it suggests that metrics that 
more directly measure nearshore anoxia may be necessary.

5  |  CONCLUSIONS

Our study emphasizes a number of key points for developing mod-
els for the purpose of landings forecasting. First, improvements in 
catch forecasts beyond what is possible using prior catch (a null 
autoregressive catch model) may be elusive. All the environmen-
tal covariates that we tested are closely tied to factors that affect 
critical months of spawning, growth, survival, and movement of 
sardines into the nearshore (where they are exposed to the fish-
ery). Yet almost none of these explained catch variability, beyond 
what could be explained using a simple autoregressive catch model. 
Second, non- linear effects are common and important to consider. 
Third, covariate effects can change over time. Fisheries exist within 
complex multi- species ecological systems and species and their life 
histories evolve. Forecast models will need to guard against covari-
ate effects that change over time and lead to an erosion of forecast 
performance. Lastly, model complexity comes at a price particularly 
when the goal is prediction. Inclusion of out- of- sample prediction 
metrics is crucial as these can give a very different picture compared 
with metrics for model fit alone. Covariates that are supported by 
model fit, even using model selection metrics that penalize extra 
complexity, may still be uninformative or even disinformative for 
out- of- sample prediction.

Despite all this, we found that there were environmental covari-
ates that did appreciably improve landings prediction. In particular, 
the multiyear average sea surface temperature has now emerged 
as an informative covariate across multiple studies on sardine spe-
cies, and interestingly, the Atlantic Multidecadal Oscillation index— 
recently shown to be correlated to oil sardines landings by Hamza 
et al., (2020)— was also an informative covariate in our analysis. 
This suggests that the Indian oil sardine is affected by global- scale 
processes, in particular the teleconnection between the AMO and 
Indian Ocean processes (reviewed in Hu, Hu & Hu, 2018; Zhang 
et al., 2019). We see a number of fruitful directions to explore to 
further improve short- term forecasts. The first is incorporation of di-
rect leading indicators of catch. We did not show models with catch 
in the prior quarter as a predictor; surveys take time to process and 
report and thus data for the immediately prior quarter would not 
be available. Had we included the prior quarter catch, the fits and 
predictions would be much better. However, models could use pre-
liminary catch numbers from the beginning of the prior quarter from 
sentinel landing centers or gear types. This would be feasible with-
out a new data collection scheme and would certainly improve the 
short- term forecasts for the next quarter. A longer- term approach 
would be incorporation of recruitment information from egg or lar-
val density surveys. Such surveys have been conducted on the U.S. 
West coast since the 1940 s by the California Cooperative Oceanic 
Fisheries Investigations (CalCOFI) Program (Gallo et al., 2019), and 
these data have been successfully used to improve abundance es-
timation and management of the Pacific sardine (McClatchie, 2014). 
Leading abundance indicators, such as from preliminary catch data or 
larval surveys, are likely to be especially important if climate changes 
alter past relationships of catch with the environmental covariates.
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The temperature of the Western Indian Ocean has been increas-
ing over the last century at a greater rate than in any other tropi-
cal ocean (Roxy et al., 2014), and warming has been most extreme 
during the summer monsoon months. These changes are affecting 
the oil sardine distribution, with significant landings now occurring 
north of Goa (Vivekanandan et al., 2009). Continued warming is 
expected to affect the productivity of the region via multiple path-
ways, including changes in salinity, oxygen concentration, currents, 
wind patterns, ocean stratification, and upwelling spatial patterns, 
phenology, and intensity (Moustahfid, Marsac, & Grangopadhyay, 
2018). The incorporation of environmental covariates into landings 
forecasts has the potential to improve fishery management for small 
pelagic species, such as oil sardines, in the face of a changing ocean 
environment (Haltuch et al., 2019; Tommasi et al., 2016). However, 
careful performance testing of the environmental covariates will be 
needed and expectations as to how much environmental covariates 
can improve forecasts should be tempered, especially if there are 
multi- month lags in the landings data available to include in the fore-
cast or if new sources of abundance indicators, such as recruitment 
surveys, remain unavailable.
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